Basic Functional Equations of the Rogers-Ramanujan Functions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rogers-Ramanujan Functions, Modular Functions, and Computer Algebra

Many generating functions for partitions of numbers are strongly related to modular functions. This article introduces such connections using the Rogers-Ramanujan functions as key players. After exemplifying basic notions of partition theory and modular functions in tutorial manner, relations of modular functions to q-holonomic functions and sequences are discussed. Special emphasis is put on s...

متن کامل

Hall-littlewood Functions, Plane Partitions, and the Rogers-ramanujan Identities

We apply the theory of Hall-Littlewood functions to prove several multiple basic hypergeometric series identities, including some previously known generalizations of the Rogers-Ramanujan identities due to G. E. Andrews and D. M. Bressoud. The techniques involve the adaptation of a method due to I. G. Macdonald for calculating partial fraction expansions of certain types of symmetric formal powe...

متن کامل

Hall–littlewood Functions and the A2 Rogers–ramanujan Identities

We prove an identity for Hall–Littlewood symmetric functions labelled by the Lie algebra A2. Through specialization this yields a simple proof of the A2 Rogers–Ramanujan identities of Andrews, Schilling and the author. Nous démontrons une identité pour les functions symétriques de Hall–Littlewood associée à l’algèbre de Lie A2. En spécialisant cette identité, nous obtenons une démonstration sim...

متن کامل

Rogers-Ramanujan computer searches

We describe three computer searches (in PARI/GP, Maple, and Mathematica, respectively) which led to the discovery of a number of identities of Rogers-Ramanujan type and identities of false theta functions.

متن کامل

Variants of the Rogers-ramanujan Identities

We evaluate several integrals involving generating functions of continuous q-Hermite polynomials in two diierent ways. The resulting identities give new proofs and generalizations of the Rogers-Ramanujan identities. Two quintic transformations are given, one of which immediately proves the Rogers-Ramanujan identities without the Jacobi triple product identity. Similar techniques lead to new tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 2007

ISSN: 0035-7596

DOI: 10.1216/rmjm/1181068771